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laboratory is directed toward enhancing the delivery of the
(chloroethyl)diazonium ion to the tumor tissue, without
the undesirable side reactions. The methyl group in the
3-position will be replaced by groups which favor the
dissociation to the (2-chloroethyl)diazonium and which do
not produce toxic intermediates. The benzyl group ap-
pears to have these qualities. Likewise, the experience with
the apparent activation of CMM by metabolism of the
N-methylcarbamoyl moiety suggests that an appropriately
designed acyl group, which can be cleaved by a tumor-
specific enzyme, may impart much greater selectivity and
greatly decreased toxicity.

Experimental Section

Synthesis. The compounds in this study were prepared by
previously published methods. Thus, DMA, DMP, and DMC were
prepared by the acylation of the anion of 1,3-dimethyltriazene
(DMA, CMP, DMC) or, in the case of DMM, by the direct reaction
of 1,3-dimethyltriazene with methyl isocyanate.!? The compounds
were isolated and characterized as described previously and were
>99% pure. The (2-chloroethyl)triazenes CMA, CMC, and CMM
were prepared by a multistep synthesis, also described previously.®
These compounds were also analytically pure.

Kinetics. Rates of triazene decomposition were determined
spectrophotometrically, as described previously,]? on a Hew-
lett-Packard Model 8450A diode-array spectrophotometer. The
thermostated (£0.1 °C) 1-cm cuvettes were charged with 1.341
mL of 0.1 M lysine buffer at the appropriate pH. The reaction
was initiated by addition of 9 uL of a 3 X 10 M solution of the
triazene in acetonitrile. The reference cuvette contained the same
buffer and 9 uL of acetonitrile. The reactions were followed for
at least 3.5 half-lives and at least 100 points were used to evaluate

each rate constant. The calculations employed the Guggenheim
approximation to determine the infinity absorbance and the rate
constants were evaluated by a least-squares method. The cal-
culations were carried out by utilizing a program written in our
laboratory. Each kinetic run was carried out in duplicate and,
when deviations were >3%, three or more runs were used to obtain
a more accurate value.

MTT-Microculture Tetrazolium Assay. Cellular growth
in the presence or absence of experimental agents was determined
by using the previously described MTT assay.!” Briefly, cells
were harvested and inoculated into 96-well microtiter plates at
1000 celis/well. After 24 h, drugs were applied and cultures were
incubated an additional 6 days at 37 °C. MTT was added, the
formazan product was solubilized, and the absorbancy was
measured at 540 nm with a Bio-Tek Model EL 312 microplate
reader.
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An application of the neural network to quantitative structure-activity relationship (QSAR) analysis has been studied.
The new method was compared with the linear multiregression analysis in various ways. It was found that the neural
network can be a potential tool in the routine work of QSAR analysis. The mathematical relationship of operation
between the neural network and the multiregression analysis was described. It was shown that the neural network

can exceed the level of the linear multiregression analysis.

Introduction

The first quantitative structure—activity relationship
(QSAR) method is the model proposed by Hansch and
co-workers,** It was the seminal contribution to this field.
The success of this method has prompted many workers
to reexamine the derivation of the Hansch equation by
using the principles of theoretical pharmacology®® or
pharmacokinetics.”® This model, the free energy model,!
and its elaborations!? have been by far the most widely
used. This may be due to its direct conceptual linkage to
established physical organic chemical principles. However,
the method is totally dependent on the multiregression
analysis. This causes the problems of orthogonality of the
variables as well as the size of population.

QSAR is also regarded as the problem of pattern rec-
ognition. From this view point, techniques of pattern

tHitachi Computer Engineering Co., Ltd.
tHoshi College.

recognition have been applied to QSAR study, examining
structural features and/or chemical properties underlying
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Figure 1. n-Layer neural network.

patterns that are associated with differing biological effects.
A number of pattern recognition systems have been de-
veloped: the earliest used in QSAR work were that of
Kirschner and Kowalski, called ARTHUR,® and that of
Stuper and Jurs, named ADAPT.14!5  Some difficulties
of the earliest methods prompted attempts in different
approaches to QSAR. One of the fruitful outputs is the
SIMCA system of Wold et al.’¥!® This method makes use
of principal components analysis to provide a structure and
limits to the classification groups so that not only group
membership but also the level of activity within each group
can be determined. The most successful approach may
be the method called adaptive least squares (ALS) pro-
posed by Moriguchi et al.2%2! which is related to discri-
minant analysis. However, the resolution and prediction
abilities of the ALS as well as other pattern-recognition
methods are still far from satisfactory.

Recently, the neural network has been the center of
attention in the field of pattern recognition. The neural
network is one of typical parallel-distributed processing
methods and is a computer-based system derived from
simplified concept of the brain in which a number of nodes,
called processing elements or neurons, are interconnected
in a netlike structure.?? Since the characteristics of the
neural network have been found to be suitable for the
processing of data in which the relationship between the
cause and its results cannot be exactly defined, such
pattern recognitions as those of handwriting letters and
human’s voice are most expected to be targets of appli-
cation. We considered that the effective application of
such neural networks may bring forth a breakthrough in
the current state of QSAR analysis.

As our preceding reports show, the neural networks were
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successfully applied to decision making? and to the study
of structure-activity relationship.2* In the latter appli-
cation, we could show that the resolution ability of the
neural network exceeded that of the ALS method. These
are examples of the application of the classification ability
which demonstrates that the neural network would be a
valuable tool in clinical media as well as in developing new
drugs.

It has been said that one cannot give rationalization to
the results by the neural network. And this was considered
to be the fatal defect of this method as a theoretical tool.
In order to remove this obstacle, we studied the reasoning
and found the fact that the operation of the neural net-
works is, indeed, one of the nonlinear multiregression
analyses.

Theory

A. The Standard Operation of a Neural Network
with Back-Propagation Algorithm. Shown in Figure
1 is the perceptron-type neural network: the circles are
neurons which are actually variables taking a value ranging
from 0 to 1. The number of the layer is arbitrary and
generally consists of n layers. The data are input to A and
are output from B. The value of a neuron (0)) at the nth
layer can be expressed by eq 1 where x; is one of the values

0;=1/[1 + exp(-ay)] = f(y)  y;= (ZWxp) - 6; (1)

of the neurons at the n ~ 1 layer; W;;, an element of the
weight matrix, expresses the weight value between neurons
iand j and can take either a positive or negative value; 6,
is a threshold value for neuron j, « is a parameter which
expresses the nonlinearity of the neuron’s operation. On
feeding the input data, the value of every neuron expressed
by eq 1 is synchronously renewed.

Given N neurons at the first layer. A set of the input
data can be expressed by a vector with N elements for N
neurons which is, here, called and “input pattern”. Like-
wise, the output data can also be regarded as a vector and
be called an “output pattern”. The vector which is com-
pared with an output pattern to obtain the fixed W;; is
called a “training pattern” (¢;). The training of the network
is based on the following equations.

5WU = —djxie (2)
d; = (0;- ) ) (3a)
d; = (Wiydde() (3b)

Here, ¢ is a parameter which determines the shift for
correction in recursive cycles. Equation 3a is used only
for the correction of the last (output) layer and 3b for other
layers where W’ and d’ at the nth layer are W; and d; at
the n + 1 layer, respectively. The function ' in eq 3 is

) = {0)I1 - fO)]e (4)

where both € and a can be set to be independent of the
layer.

The training is carried out according to the above
back-propagation algorithm?? until

E=% (Oj - lfj)2 (6))

becomes small enough. Even in case that M sets of the
input and training patterns are given, all of output patterns
can be made close enough to the training patterns by the
iteration of eqs 1 and 2. If the convergence is attained,

(23) Aoyama, T.; Suzuki, Y.; Ichikawa, H. Chem. Pharm. Bull.
1989, 37, 2558.

(24) Aoyama, T.; Suzuki, Y. Ichikawa, H. J. Med. Chem. 1990, 33,
905.
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Table I. Structures and Parameters of Neural Networks
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A C
ly*  nnr @ ¢ ¢ ly* nnrt @ ¢ # 1y nonrt o ¢ ]
1 7 1 13 1 14
2 12 eql 2 0.10 0 2 26 eql 5 0.05 0 2 28 eql 5 0.05 0
3 1 eq 6 - 0.05 - 3 1 eq 6 - 0.05 - 3 1 eq 6 - 0.05 -

sLayer. ®Number of neurons.

then the neural network has an ability to classify the input
patterns into M groups.

Those procedures can easily be programmed in BASIC
or FORTRAN languages. The length of the program is
ca. 200 steps and one can practically perform the operation
of the neural network on a small personal computer.

B. The Relationship between the Operation of
Neural Network and the Multiregression Analysis.
Here, we describe the relationship between the operation
of the neural network and the multiregression analysis.
For simplification, let us consider a three-layer network.
Since the operation expressed by eq 1 results in vector
elements that are too close to 0 or 1, eq 1 is not very
suitable when it is applied to the problems where the
values between 0 and 1 are important. Therefore, we
considered a new operation equation. Without losing
generality, one can omit 6; in eq 1, giving

W= ZWijxi (6)
Namely,
y=Wx (7)

where W and x are the weight matrix and the input vector,
respectively. Thus, if all neurons of each layer are gov-
erned by eq 6, i.e.

y=Wax z2=Wy ®
then, the output pattern, z, becomes
z = (W,Wyx = Wx 9)

where W, and W, are the matrices which express the
weights between the layers 1 and 2 and those between the
layers 2 and 3, respectively.

The method of the multiregression analysis seeks the
optimal coefficients of the linear equation

zi=a; + Lby (10)

where z and x are, respectively, the expectation vector and
input data. Equation 10 is equivalently rewritten as

z2=B(1+x) (11)

Equation 9, a special case of the neural network’s opera-
tion, shows that the operation is equivalent to that of the
2-layer network and to that of a generalized multiregression
analysis if the variables are so set as x to be the observed
values plus the constant 1. It should be emphasized here
that addition of the constant 1 to the input data means
that the optimization of 6, in eq 1 is carried out through
the weight matrix, Wj;.

C. An Improvement of the Operation of the Neural
Network. The neural network with eq 9 performs the
linear operation equivalent to that of multiregression
analysis. In order to exceed this level, it is necessary to
introduce a nonlinear operation in the network. This is
possible by incorporating the hidden layers. Thus we used
a three-layer network, letting O; = y; and using eq 6 for
the last year. However, the larger number of the neurons
in the hidden layers must be adapted, rather than the
input layer, to avoid loss of the information that the input
pattern has.?

Results and Discussion

We considered that, in order to show the usefulness of
a new method, it may be most appealing to use the data
well-studied by the conventional methods to compare the
results.

A. QSAR in Carboquinones. Carboquinones were
synthesized by Nakao et al.??7 and other groups?*-3 and
were developed to an anticarcinogenic drug for the clinical
media. A detailed QSAR study based on the Hansch
method has been carried out by Yoshimoto et al.3 We
first used those data to compare the results of the neural
network with those of conventional QSAR techniques.

For comparison, we tried two sets of the structure and
parameters of the network which are shown in Table I,
parts A and B. The input data, physicochemical param-
eters, are the molecular refractivity constants (MR), hy-
drophobicity constant (7), substituent constants (F and
R), as well as, MR, ; and 7, , to estimate the steric effects
of R! and R? and the total hydrophobicity. Biological data
are minimum effective dose (MED) and optimal dose (OD)
on a chronic treatment schedule and those in single in-
jection. MED is the dose giving a 40% increase in lifespan
compared to the controls, and OD is the dose giving
maximum increase of lifespan. The input data are shown
in Table IL

The input data, MR,,, 5, 7, MRy, F, and R, are
rescaled to have the values between ca. 0.1 and 1 by the
following equation

'fi = (xi ~ Xmin + 0.1)/(xm“ ~ Xmin + 0.1) (12)

and fed to the network together with the constant 1. As
the training pattern, log (1/¢) of the observed values were
rescaled to have the values between 0.0 and 1 and given
to the third layer.

In order to make best use of the information embodied
in the data, we also examined the effect of incorporating
squares, MR, 2, 5%, 5%, MR,% FZ, and R? in the input
data, although the original authors did not consider them.
The parameter set of the network was shown in Table I,
part B, where a was set to be 5 in order to increase the
nonlinearity of the neuron’s operation. Generally, as the
nonlinear operation is increased, the convergence is not
easily attained.

The results are shown in Table III, where columns for
cle 1, 2, 3, and 4 (columns 3, 7, 11, and 15, respectively)
are the calculated results in the literature® and those for

(25) An extensive program, PSDD (Perceptron Simulator for Drug
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QCPE (Quantum Chemistry Program Exchange, Indiana
University, IN).
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Table II. Input Data for Carboquinones®

>N

Aoyama et al.

no. Rl Rz MRl.Z 1.2 o MR]_ F R
1 CH, COCH, 1.69 2005 055 057 0.28 0.07
2 CeHs CeHs 5.08 3.92 196 254 016  -0.16
3 CH, (CH,):CeH; 4.50 3.66 316 057 008  -0.26
4 CsHy Hy, 4.86. 5.00 250 243 008  —0.26
5 CH(CH,), CH(CH,), 3.00 2.60 1.30 1.50 008 026
6 CH, CH,CgH; 3.57 2.51 2.01 0.57 -0.12 -0.14
7 C;H, C;H, 3.00 3.00 1.50 1.50 -0.08 -0.26
8 CH, CH,0CH; 3.79 2.16 1.66 0.57 -0.04 -0.13
9 R! = R? = CH,CH,0CON(CHy), 6.14 0.72 036 307  -008 0.2

10 CH, H 2.06 2.00 1.00 103 008  -0.%

11 CH, CH,CH,0CH, 2.28 1.03 053 057 008 0.2

12 OCH, OCH, 1.58 004 002 079 052 -1.02

13 CH, CH(CHy), 2.07 1.80 130 057  -0.08 0.2

14 C.H, CH(OCH,)CH,0CONH, 4.24 098  -0.52 150  -0.04 0.3

15  CH, CH,CH,0CON(CHj), 3.64 0.86 036 057 008  -0.26

16 CH, CH; 1.14 1.00 0.50 0.57 -0.08 -0.26

17 H CH(CH,), 1.60 1.30 1.30 0.10 -0.04 -0.13

18 CH, CH(OCH,)C,H, 2.75 1.53 103 057  -004 0.3

19 C;H, CH,CH,0CONH, 3.56 1.45 -0.05 1.50 -0.08 -0.26

20 R' = R? = CH,CH,0CH, 3.42 1.03 053 171 -0.08  -0.26

21 C,H; CH(OC,H,)CH,0CONH, 4.23 098  -002 108 004  -013

22 CH, CH,CH,0COCH, 2.78 1.23 073 057 008  —0.26

23 CH; (CH,)s-dimer 1.96 2.00 1.50 0.57 -0.08 -0.26

24 CH, JH, 1.60 1.50 100 057  -008  -0.26

25 CH, CH(OCH,CH,0CH,)CH,0CONH, 4.45 001  -049 057 004 013

26 CH, CH,CH(CH,;)OCONH, 3.09 0.75 0.25 0.57 -0.08 -0.26

27 C,H; CH(OCH,)CH,0CONH, 3.77 048 052 103 -004  -0.13

28 CH, CH(C,H;)CH,0CONH, 3.55 1.25 075 057 008  —0.26

29 CH, CH(OC,H,)CH,0CONH, 3.77 048  -0.02 0.57 004  -0.13

30 CH, (CH,),0CONH, 3.09 0.95 0.45 0.57 -0.08  -0.26

31 CH, (CH,),0CONH, 2,63 045 005 057  -008  -0.26

32 CH, (CH,),0CONH, 3.09 095  -005 103  —0.08 0.2

33 CH, CH,CH,0H 1.78 0.34 -0.16 0.57 -0.08 -0.26

34 CH, CH(CH,)CH,0CONH, 3.09 0.75 025 057 008  -0.26

35 CH, CH(OCH;)CH,OCONH, 3.31 -0.02 -0.52 0.57 -0.04 -0.13

3 H N(CH,), 1.66 0.18 018  0.10 010  -0.92

37 R! = R? = CH,CH,OH 2.42 -0.32 -0.16 1.21 -0.08 -0.26

38  CH, N(CH,), 2.13 0.68 018 057 006  -1.05

39 CH, CH(OCH,)CH,0H 2.47 013  -063 057  -004 0.3

3The data were taken from the literature (ref 31).

set A are the results for the parameter set A while set B
are those for the parameter set B. The numbers in the
rows with +, £, and — show cases of superior (i.e., much
closer to the observed values), equivalent, and inferior to
those by the multiregression analysis, respectively. Ap-
parently, the neural networks give better results than the
multiregression analysis does. It should be noted here that
incorporation of the second-order contributions (MR,,2,
etc.) considerably improves the ability. Besides, increase
of input parameters does not cause as much trouble in the
neural network as it does in the multiregression analysis.
Therefore, it may be always recommended to incorporate
the squares of the input physicochemical parameters.
The comparisons of the mean deviations, variances, and
standard deviations by the neural network with those by
the multiregression analysis are shown in Table IV. As
seen from the table, the results by the neural networks
were found superior in all cases. The ratios of variance
(F) of the multiregression analysis over the neural network
were 1.14 < F < 1.5 for the parameter set A and 1.26 <
F < 1.97 for the set B. Since the number of the regression
coefficients was 6, the ratios can be regarded as valid ones.
We have tested the results of the neural network by the
following method. The leave-n-out method (n =1, 2, 5,
and 10) was applied to the network with the parameter set
A. Namely, the 37 — n data which are formed by randomly

removing n number of data from the total 37 data, were
fed to the network for training. Then, the removed data
were input to the trained network to calculate the mean
deviations. This operation was repeated 37 times and the
deviations (o%) were averaged. The results are shown in
Table V, where for comparison the deviation of the data
used for training (o1.2) are also recorded.

Although the deviations of the untrained data were
found to be sightly larger than those of trained data, it may
be said that the neural network well reproduces the ob-
served values. The small variances also indicate that the
relevant data have a good linear relationship,

B. QSAR in Benzodiazepines. Randall et al. first
introduced chlorodiazepoxide, a derivative of benzo-
diazepine, as a minor tranquilizer.32 Since then, the bi-
ological activities of 1,4-benzodiazepines have been ex-
tensively studied® and played the major role in the field
of minor tranquilizers. The QSAR study on this series of
compounds has been carried out by Kubota et al.3% We

(32) Randall, L. O.; Schallek, W.; Heise, G. A,; Eith, E. F.; Bagdon,
R. E. J. Pharmacol. Exp. Ther. 1960, 129, 163.

(33) Sternbach, L. H.; Randall, L. O.; Banziger, R.; Lehr, H. In
Medicinal Research Series 2. Drugs Affecting the Central
Nervous System; Burger, A., Ed.; Mercell Dekker, Inc.: New
York, 1968; p 237.
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Table III. Comparison of Results by Neural Networks with Those by Multiregression Analysis
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chronic injection, log (1/C)

singular injection, (1/C)

MED 0D MED 0D
no. obsd® clc1® set A° set B¢ obsd® clc2® set A° set B¥ obsd® clc3® set A° set B9 obsd® clc4® set A? set B?
1 3.94 4,12 4,260 4.387 3.48 3.72 3.7567 3.582
2 433 4.05 4,260 4,362 4.14 3.81 4,062 4.155 3.53 297 3.301 3.426
3 4,47 4,61 4,629 4549 4.21 4,57 4,561 4.452 3.93 4.23 4,268 4.178 3.60 3.99 3.923 3.717
4 4.63 4.31 4,327 4,297 4.52 4.27 4,211 4.167 4.07 3.58 3.8256 3.840 3.62 3.50 3.615 3.491
5 4.77 5.26 5.097 5142 4,59 4,96 4.809 4920 4.36 4,74 4,658 4.624 4,14 4.38 4,292  4.195
6 4,85 5.18 5109 5.087 4.69 4,92 4944 4874 474 4,77 4,746 4672 4.26 4,37 4,320 4.169
7 4,92 5.15 4,976 5.006 4.44 4.89 4,802 4.804 4.32 4.55 4,530 4.488 4,14 423 4,171  4.047
8 5.15 5.21 5.132 5.206 4.71 4.87 4,803 4916 4.68 4.61 4611 4.692 3.89 4.23 4,167 4.123
9 516 5.21 5193 5.048 485 4.83 4.862 4.815 462  5.07 4,647 4.537
10 5.46  5.57 5463 5.525 5.09 520 5227 5253 494 501 4997 4992 479 4.58 4575 4.489
11 5.57 5.98 5977 6.021 5.42 5.50 5621 5.657 5.19 5.51 5524 5579 5.12 4.95 5.019 4,998
12 5.59 5.74 5707 5.729 5.17 5.27 5294 5264 4.81 4,79 4569 4.629 4,32 4.45 4,144 4.196
13 560 5.58 5536 5.579 5.21 5.23 5325 5339 496 5.13 5100 5.108 469 4.67 4,657 4.616
14 5.63 6.03 5.797 5.808 5.07 5.37 5.229 5239 5.01 5.18 5191 5.117 4.64 4,66 4,645 4.446
15 5,09 5.59 5626 5.684 4.84 5.01 5.068 5.023
16 5.66 5.99 6.067 6.088 536 5.51 5742 5730 536 5.52 5539 5505 479 496 5.067 4.971
17 568 5.56 5657 5728 5.37 5.13 5393 5388 5.16 5.02 5024 5032 459 454 4,548 4.564
18 568 5.54 5498 5.617 5.33 5.09 5,186 5236 526 491 4907 5014 484 4.46 4,430 4.429
19 5.68 5.96 5720 5.736 5.23 5.43 5291 5329 490 530 5.286 5.214 442 4,80 4,792 4.650
20 5.69 5.59 5.564 5.611 5.31 5.17 5.247 5298 5.18 5.51 5.157 5.089 4,71 4,95 4,799 4,786
21 5.76  5.93 5763 5829 5.24 5.33 5253 5294 540 5.18 5195 5241 464 4,66 4.641 4.515
22 578  5.87 5824 5874 578 543 5492 5.539
23 582 547 5434 5468 5.39 5.16 5.257  5.256
24 586 5.73 5732 5.776 5.37 5.33 5485 5495 516 528 5259 5.255 452 478 4,807 4.755
25 6.03 6.33 6.326 6.272 539 5.62 5649 5613 545 5.65 5.7561 5,739 496 5.01 5096 4.891
26 6.14 6.12 6.104 6.125 579 5.60 5,667 5706 5.86 5.64 5690 5759 5,18 5.05 5,140 5.106
27 6.16 6.19 6.100 6.115 5.22 5.50 5488 5494 5.62 5.42 5471 5487 492 4.84 4,885 4.712
28 6.18 5.86 5767 5805 566 5.42 5417 5.467 6.03 540 5402 5462 520 4.87 4,877 4.850
29 6.18 6.09 6.061 6.113 5.22 5.46 5512 5541 5.53 5.42 5472 5564 4,62 4.84 4,879 4.805
30 6.18  6.02 5977 6.013 593 5.53 5581 5628 555 5.55 5,573 5.644 548 498 5.037 5.017
31 6.21 6.28 6.333 6.323 575 550 5844 5857 583 5.79 5871 5921 546 5.16 5.313 5.249
32 6.25 6.12 6.016 6.038 548 5.57 5557 5596 598 5,55 5571 5591 4.88 498 5.043 4.940
33 639 6.34 6.466 6.433 579 574 5980 5956 589 5.84 5938 5935 525 5.20 5,399 5.287
34 641 6.12 6.104 6.125 5.71 5.60 5.667 5706 593 5.64 5690 5759 5.31 5.05 5.140 5.106
35 641 6.35 6.424 6.404 566 5.64 5770 5744 5.81 5.67 5,767 5813 5.03 5.03 5.145 5.001
36 645 6.54 6.623 6.581 6.19 6.16 6.300 6.319 6.02 6.19 6.291 6.287 574 5.60 5750 5.663
37 6.54 6.12 6.376 6.333 6.05 5.56 5907 5.875 593 6.16 5894 5852 560 545 5494 5.429
38 6.77 6.56 6.468 6.426 6.21 6.25 6.210 6.194 6.54 6.30 6.376 6.310 5.69 5.72 5.878 5.638
39 6.90 6.40 6.559 6.522 5.75  5.67 5903 5.848 6.06 5.72 5.833 5.851 5.27 5.07 5.228 5.060
+¢ 17 19 21 22 17 24 22 24
+¢ 3 0 1 0 6 1 1 1
- 17 18 15 15 12 10 14 12

¢Data by Yoshimoto et al.*® ®The results calculated by eqs 8, 10, 12, and 14 in ref 30. ¢Results by the neural network with the parameter
set A (Table I, part A). 4Results by the neural network with the parameter set B (Table I, part B). ¢+, £, and - show the numbers of cases
in which the neural network is superior, equivalent, and inferior to the multiregression analysis, respectively.

Table IV. Comparison of Mean Deviation, Variance, and Standard Deviation

chronic injection

single injection

MED 0D MED 0D
set A°  set B® MR¢ set A®  set B MR¢  set A°  set B MR¢  set A®°  set B? MRe¢
MD 0.17 0.16 0.20 0.15 0.14 0.20 0.19 0.23 0.16 0.14 0.20
variance 0.044 0.044 0.059 0.036 0.032 0.054 0.064 0.058 0.073 0.040 0.030 0.059
SD 0.21 0.21 0.24 0.19 0.18 0.25 0.24 0.27 0.20 0.17 0.24

¢Results by the parameter set A (Table I, part A). ®Results by the parameter set B (Table I, part B). ¢Results by the multiregression

analysis.

quote those data and compare them with the results of the
neural network.

The same biological data and structural parameters were
used as those in the literature.** The input parameters
are MR-3, -3, MR-7, 6,-3, F-4, R-4, I-1 and the squares
of MR-3, 7-3, MR-7, p,-3, F-4, and R-4 and the constant
1 to make best use of the information of the structural
parameters (where the number (-3, etc.) indicates the
position of the structure shown in Table VI). As a rule,

(34) Kubota, T.; Yamakawa, M.; Terada, H.; Yoshimoto, M. In
Structure-Activity Relationships—Quantative Approaches; the
QSAR Research Group, Ed. Kagaku no Ryoichi Supl. Ed., No.
122, 1979,

Table V. Variances of Leave-n-Out Results in Carboquinones®

leave-n-out o? o2
1% 0.069 0.043
2 0.016 0.043
5 0.044 0.041
10 0.059 0.040

¢ Applied to MED of chronic injection. ®Simple mean value of
differences (observed value - calculated value).

the input data were rescaled to have the values between
ca. 0.1 and 1. The number of neurons of each layer and
the parameters are shown in Table I, part C.

The input data and the results together with those in
the literature are recorded in Table VI. If one compares



Table VI. Input Data® and Results for Benzodiazepines

R3
R«
anti-pent effect® anti-fighting behavior clined screen test

no. substituent MR-3 =3 MR-7 o¢,8 F4 R4 11 obsd® clc1® NN¢ obsd® clc2® NN¢ obsd® clc3° NN¢

1 3-Cl-7-i-CgH, 0.60 0.71 2.42 0.37 00 00 0.0 499 476 4.876 3.53 3.78 3791 283 315 2.856

2 3,4-F,-7-CH,4 0.09 0.14 0.57 034 043 -034 0.0 333 6.40 3.447 285 4.05 2658

3 3-SC,H; 1.84 1.07 0.10 015 0.0 00 10 3.57 400 3.874

4 3-Cl-7-CH,CONHCH; 0.60 0.71  1.92 0.37 0.0 00 00 5.83 495 5.012 3.63 3.95 3917 288 336 2932

5 3-SC/H, 2.1 207 0.10 015 0.0 00 1.0 379 3.50 3.859

6 3-NO,-7-i-CsHy, 0.74 -0.28 2.42 071 0.0 00 00 480 5.02 5.027 3.77 4.28 3989 294 342 2691

7 3-N(CHy, 1.56 018 0.10 -0.15 0.0 00 10 3.84 385 3.994

8 3-Cl-4-OCH;, 0.60 0.71 0.10 037 026 -051 1.0 460 530 4.638 3.48 4.83 3448 300 338 2610

9 3-Cl-7-(CH,)sN(CHy), 0.60 0.71 295 037 0.0 00 0.0 338 456 4.712 301 293 2901
10 3-Cl-7-(CH,);0H 0.60 0.71 1.65 037 00 00 0.0 434 5.05 5.081 3.04 348 3.047
11 3-NO,-7-CH,CONHCH, 074 028 192 0.71 0.0 00 0.0 529 521 5269 4.55 4.45 4419 3.07 3.63 2.859
12 3-Cl-7-(CHyp),N(C.H;), 0.60 0.71 341 037 0.0 00 0.0 5.06 439 4545  3.57 3.45 3.724 309 273 3.009
13  3-Cl1-7-CH,CON(CHjy), 0.60 0.71 239 037 0.0 00 00 535 4.77 4884 4.25 3.79 3.79% 3.11 316 2.856
14 4-F-7-CH, 0.10 0.0 0.57 0.0 043 -0.34 0.0 453 6.06 4359 3.83 4.26 3922 313 356 2681
15 3-Cl-7-CH,CgH; 0.60 0.71  3.00 037 0.0 00 0.0 464 454 4696 3.56 3.59 3.732
16  3-Cl-7-(CH,),N(CH,), 0.60 0.71 2.48 037 0.0 0.0 0.0 473 474 4858 3.53 3.76 3781 3.14 3.13 2.856
17 3-Cl-4-F-7-(CHy;N(CH;), 0.60 0.71 295 037 043 -034 0.0 476 427 5193 397 4.18 4244 317 319 3167
18 H 0.10 0.00 0.10 000 000 000 1.0 3.37 3.44 3301 320 3.08 2967
19 3-CF;-7-CH,CONHCH;, 0.50 0.88 1.92 043 0.00 000 0.0 506 5.06 5.088 3.69 4.07 4108 320 348 3.080
20 3-SCH; 1.38 061 0.10 0.15 000 000 1.0 415 524 3953 415 3.76 4109 321 341 3.231
21  3-Cl-7-(CH,);0H 0.60 071 165 037 000 0.00 0.0 3.61 4.04 4,024
22 3-Cl-7-CH,CONH, 0.60 0.71 1.44 037 000 000 0.0 5.07 513 5.132 421 4.11 4124 321 3.57 3.182
23 3-F 0.09 0.14 0.10 034 000 000 1.0 3.40 4.05 3490 323 3.57 3.259
24 3-SOCH; 1.37 -158 0.10 052 000 000 1.0 408 461 4.338 323 348 2823
25 3-Cl-4-CH, 0.60 0.71 0.10 037 -0.04 -0.13 1.0 457 481 5115 345 4.28 3.727 328 336 3.583
26 3-N(CH,),-7-CH, 1.56 0.18 057 -0.15 000 0.00 0.0 469 443 4.561 3.86 3.44 3849 329 313 2952
27 3-Cl-4-F-7-(CHp);N(C,H;), 0.60 071 341 037 043 -034 000 538 509 5187 429 4.02 4215 329 3.00 3.322
28 3-NO,-7-(CH,);N(CH,), 156 018 057 037 041 -015 00 582 510 6100 361 380 3608 3.34 301 2792
29 3-NO,-7-(CH,);N(CH,), 074 -028 295 -0.15 000 000 00 428 482 4573 396 410 3885 335 320 3218
30 3-NO,7-(CHy,N(CH,), 074 -028 2.48 071 000 000 0.0 470 5.00 5.002 4.25 4.26 3938 337 340 2680
31 3-Cl4-Cl 0.60 0.71  0.10 037 041 -0.15 1.0 585 554 6216 5.18 4.52 4960 348 361 3.654
32 3-Cl-7-CHj-cyc-C3Hj 0.60 0.71 1.82 037 000 000 0.0 490 499 5038 4.51 3.99 3953 3,51 3.4 2967
33 3CN 063 -0.57 o0.10 056 000 000 1.0 530 5.04 5458 3.81 4.37 4004 354 3.73 3.358
34 3-NO,-4-CF; 074 -028 0.10 071 038 019 1.0 5.70 576 5.835  4.54 4.64 4371 354 393 3.229
35 3-Cl 0.60 0.71  0.10 037 000 000 1.0 465 487 5118 413 4.16 4168 356 3.73 3.924
36 3-CN-4-F 063 -0.57 0.10 0.56 043 -0.34 1.0 563 575 5819 4.75 4.94 4663 357 4.00 3.136
37 3-Cl-7-C,H; 0.60 071 1.03 037 000 0.00 0.0 490 528 5226 4.17 4.25 4350 360 3.74 3.549
38 3-SCH,;-7-CH,4 1.38 061 0.57 015 0.00 000 0.0 3.60 364 4267 3.87 4.34 3915 377 425 3.190
39 3-Cl-7-CH,COCH, 0.60 071 151 037 000 0.00 0.0 528 510 5115 421 4.09 4089 382 354 3133
40 3-Cl-4-Br 0.60 0.71  0.10 037 044 -0.17 1.0 5.77 559 6.2908 4.85 4.56 5.003 385 3.42 3.648
41 3-Cl-4-F 0.60 0.71 0.10 037 043 -034 1.0 6.46 558 6.112 476 4.73 4846 386 399 3483
42 3-NOy4-CF;-7-CH,4 0.74 -0.28 0.57 071 038 019 00 571 558 5542 4.86 4.89 4907 3.86 415 3.021
43  3-CF;-7-(CH,),N(CHy), 0.50 088 2.48 043 000 000 0.0 476 485 4939 4.27 3.89 3.897 388 3.24 2902
44 3-Cl-7-CH,CH=CH, 0.60 0.71 145 037 0.00 000 00 535 513 5.130 4.49 4.11 4119 389 3.56 3.175
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Table VII. Comparison of Mean Deviation, Variation, and
Standard Deviation

anti-pent® anti-fight? clined scr®
NN MRe NN¢ MR/ NN¢ MR¢
" MD* 0.24 0.39 0.16 0.30 0.25 0.33
s variance 0.11 0.37 0.04 0.15 0.09 0.17
SECRBBERREE § 28 % SDi 033 061 021 039 031 04l
PEOOIFOFIIIIN ¥ ¥ g s Anti-pentylenetetdrazole effect.  °Anti-fighting behavior.
= ¢Clined screen test. 9Results by the neural network. ¢¥Results
SIBRREERIF 8 § 8% % calculated by eqs 33, 34, and 35 in ref 34, respectively. *Mean
PEHEAR@OOFFEEE T W = deviation. ‘Standard deviation.
=]
O FPO L0 > S|+
§ 2 § TISSIIe S § 2B Table VIIL. Variance of Leave-n-Out Results in
2 Benzodiazepines®
vvmvvvvnﬁvvvvmmmmf 1 0.280 0.081
s 2 0.460 0.084
CI8NNTERRERISLRG |4 " oot oo
e e e e TS T T T " o
YA A S S S| B : :
g @ Applied to anti-pentylenetetrazole effect. ®Simple mean value
: of differences (observed value - calculated value).
BEUNIILERLIERERER 2
FHIOLALAO SIS T @00 g the present results with those of multiregression analysis,
o o 04 G 16> < O B 1> D et 18 00 m 3wt | B it is found that the neural network gives better results in
Popogan g1 gri 2S5 8B|E 96 cases, worse results in 62 cases, and the comparable
15105 (S 15 1 1S 1S 1 15 15 ¢S 1 ¢S ¢S O g resultsinscaseS.
In order to compare the reliability of the calculated
MO RN NDOTOMmm o | & ) . vH
g nenngraxnd § - "i results in Table VI, we obtained the average deviations,
2 variances, and standard deviations for the results by both
B NERISNRBBRE5EES % the neural network and the multiregression analysis. The
S EF B B BB BB B S B BS S| B results are shown in Table VII. The number of samples
= are about 54. The table shows that the ratios of variance
cocceccococagogoca| (F: the multiregression analysis over the neural network)
ceermmomomoomo~~S g are 1.89 < F < 3.75. Therefore, it may be definitely said
282288888382388%3° that the neural network reproduces the observed values
FogecSccccSgSgeSe g better than the multiregression analysis.
e oo B The leave-n-out experiments have been applied to the
2 § pgi § § § § § § § o § e¥I|2 data of anti-pentylenetetrazole effect in Table VI. The
g 57 — n data which are formed by haphazardly removing
S N I I T s > n number of data from the 57 data, were input to the
2253335833838 Ssse § nel1;W(l)rk 151 traininghphase. Then %};:a removed data were
& calculated to give the variances. is procedure was re-
PP R R peated 57 times and the averaged variances (¢%) and those
SSSS838SSS~sS33SS|® for the data used for training (s %) were shown in Table
= VIII
- .
s P EE N R EEEE ;_’; The neural network performs a nonlinearity fitting for
COPCORITCCCPPITTTI|E the input data with nonlinear relationships. The degree
g of such a fitting is determined by the characteristics (or
2828 IIREIIIIII| 2 quality in terms of the sense of linearity) of the given data.
cecccccccecceece|s It is easily expected that the larger the degree of the
o nonlinearity fitting is, the larger the deviation of expec-
=] tation is. Unlike the case of carboquinones, nonlinearity
o) g fitting in the case of benzodiazepines appears intensive
2 T} & resulting in one-digit larger 2 than those of carboquinones.
S IME E _§ Such large variances totally stem form the input data of
L S e o OF IS £|E poor linearity.
OFOs & O L50ZZwmi|e
<5 ii ¢ £ mﬁwwhv g Concluding Remarks
DL O 200 I00000 : ;
5254 % SoEBEEEE5S 3 It may be pseful to note thg dlfferenpes of operation
A ADADhdddbdhddd|T between the linear multiregression analysis and the neural
2 network. In the linear multiregresson analysis, the rela-
SESSIREBBIBEERAS T tionship between the biological activities and the structural
parameters is expressed by a linear combination of the

contributing terms. The coefficients of contribution are
determined by the least-squares method. Here, it is nec-
essary to effectively select the contributing terms consid-
ering the rationale of each term. Therefore, the quality
and the number of the terms are greatly dependent on the
experience and the knowledge of the analyzer.
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The neural network, on the contrary, does not require
such a comprehensive term selection. This is a merit as
well as a shortcoming of this method. Namely, one can
analyze the given data without knowing special techniques.
However, even if the appropriate results are obtained, the
definitive reason may not be given.

The neural network studied here performs two processes
at the same time: the process to convert the input data
to the effective form and the process to classify the con-
verted data referring to the characteristics. The former
process is carried out by the first and second layers and
the latter, by the second and third layers. Since these two
processes are optimized to the training patterns, it is very
probable for such a neural network to exceed the level of
the multiregressional analysis as shown in this paper.
Especially, the neural network becomes superior in such
cases that the analysis includes a large number of the
structural parameters or expansion terms compared to the
number of the obtained biological data. However, one may
wonder why it should be possible to determine, for exam-
ple, 96 weights in model A or 420 in model C in Table I
when a considerably small number of experimental data
is used.

The operation of the neural network is very different
from that of the usual multiregression analysis. The in-

formation in the given data is accumulated in the weight
matrices as the number of the input data is increased. The
decision by the network is very much like that of the brain
of human: the number of given data seems to be how
much a man experienced the situation. Namely, the larger
the number of data and the better the quality of the data,
the better the network gives the decision. Unlike the
multiregression analysis, however, the reliability of the
decision cannot be treated statistically at present.
Finally, it should be mentioned that one of the unfa-
miliar situations in the network is the uncertainty of weight
matrices. Namely, the operation can be exactly defined
by the mathematical expressions (eqs 1-5). However, the
matrices do not always take the same definitive elements
even if they given the definitive decision. For example,
consider the case that the weight between the first and
second layers which coagulates into neuron j; (of the sec-
ond layer) can be dispersed into j, and j, (by simply in-
creasing the number of neurons in the second layer). Then,

Wi = MWyt + MWy, (13)

where A} and ), are coefficients. Noticeably, Wy; and Wy,
are indefinite although they are controlled by the A values.
Therefore, the weight matrices do not always take the fixed
elements even if they give the same results.

Cyclization-Activated Prodrugs. Basic Esters of 5-Bromo-2’-deoxyuridine

Walfred S. Saari,* John E. Schwering, Paulette A. Lyle, Steven J. Smith, and Edward L. Engelhardt
Merck Sharp & Dohme Research Laboratories, West Point, Pennsylvania 19486. Received February 20, 1990

Some 3'- and 5-[{(alkylamino)ethyl]glycyl] esters of 5-bromo-2’-deoxyuridine were prepared and evaluated in vitro
as progenitors of the parent alcohol. The esters proved to be relatively stable at low pH but released 5-bromo-
2’-deoxyuridine cleanly at rates which were pH and structure dependent. These basic esters are examples of
cyclization-activated prodrugs in which generation of active drug is not linked to enzymatic cleavage but rather
results from an intramolecular cyclization—elimination reaction.

Ester prodrugs of alcohols are frequently utilized to
circumvent adverse physicochemical limitations or to ex-
tend the duration of action of the parent drug.'® Gen-
erally, ester prodrugs have depended upon chemical or
enzymatic hydrolysis of the ester bond for conversion of
prodrug to drug. However this strategy can only be suc-
cessful in those cases where the alcohol is generated from
the ester at a practical rate under physiological conditions.
When this requirement is not attainable, this approach will
fail or be of limited value. In addition, generation of drug
by enzymatic mechanisms may be subject to much varia-
bility between species or even among individual members
of a particular species.

A previous report? described some basic carbamate
prodrugs (1) of the melanocytoxic agent 4-hydroxyanisole
which generated the parent phenol 2 by a cyclization—ac-
tivated mechanism under physiological conditions (Scheme
I). In this approach, prodrug is converted to active drug
by an intramolecular cyclization—elimination reaction and

(1) Stella, V. J.; Charman, W. N. A,; Naringrekar, V. H. Drugs
1985, 29, 455.

(2) Stevenson, L-A.; Tunek, A. Drug Metab. Rev. 1988, 19, 165.

(3) Bundgaard, H.; Falch, E.; Jensen, E. J. Med. Chem. 1989, 32,
2507.

(4) Saari, W. S;; Schwering, J. E.; Lyle, P. A,; Smith, S. J.; En-
gelhardt, E. L. J. Med. Chem. 1990, 33, 97.
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not through mechanisms involving intermolecular hy-
drolysis of the ester bond. By this method, ideally, drug
formation is not dependent upon the host environment but
instead solely upon the rate of the intramolecular cycli-
zation reaction.

Although basic carbamates of phenols are sufficiently
activated to generate phenol at useful rates under physi-
ological conditions, the corresponding carbamates of al-
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